D. Polak, Zigron, A. , Eli-Berchoer, L. , Shapira, L. , ו Nussbaum, G.. 2019.
“Myd88 Plays A Major Role In The Keratinocyte Response To Infection With Porphyromonas Gingivalis”. J. Periodont. Res., 54, 4, Pp. 396–404.
To explore the role of keratinocyte myeloid differentiation primary response 88 (MyD88) expression in the adhesion of Porphyromonas gingivalis to the cells and its subsequent invasion and intracellular survival.\\ Primary mouse keratinocytes from wild-type (WT) or Myd88-/- mice were infected with P gingivalis alone or co-infected with Fusobacterium nucleatum. Bacterial adhesion and invasion were measured using fluorescent microscopy and flow cytometry, and intracellular survival in keratinocytes was quantified by an antibiotic protection assay. Keratinocyte expression of antimicrobial peptides was measured by real-time PCR.\İn the absence of MyD88, P gingivalis adherence, invasion, and intracellular survival were enhanced compared with WT keratinocytes. The presence of F nucleatum during infection increased the adhesion of P gingivalis to WT keratinocytes but reduced the adhesion to Myd88-/- keratinocytes. Fusobacterium nucleatum improved mildly the invasion and survival of P gingivalis in both cell types. Baseline expression of beta-defensin 2, 3, 4 and RegIII-γ was elevated in Myd88-/- keratinocytes compared to WT cells; however, following infection beta-defensin expression was strongly induced in WT cells but decreased dramatically in the MyD88 deficient cells.\İn the absence of MyD88 expression, P gingivalis adhesion to keratinocytes is improved, and invasion and intracellular survival are increased. Furthermore, keratinocyte infection by P gingivalis induces antimicrobial peptide expression in a MyD88-dependent manner. Thus, MyD88 plays a key role in the interaction between P gingivalis and keratinocytes.
S. Dishon, Schumacher-Klinger, A. , Gilon, C. , Hoffman, A. , ו Nussbaum, G.. 2019.
“Myristoylation Confers Oral Bioavailability And Improves The Bioactivity Of C(Myd 4-4), A Cyclic Peptide Inhibitor Of Myd88”. Mol. Pharm., 16, 4, Pp. 1516–1522.
Myeloid differentiation primary response 88 (MyD88) is an intracellular adaptor protein central to the signaling of multiple receptors involved in inflammation. Since innate immune inflammation promotes autoimmunity, MyD88 is an attractive target in autoimmune disease. We previously developed c(MyD 4-4), a novel cyclic peptide competitive inhibitor of MyD88 dimerization that is metabolically stable. Parenteral administration of c(MyD 4-4) reduces disease severity in a mouse model of the human autoimmune disease multiple sclerosis. We now show that N-terminal myristoylation of c(MyD 4-4) enhances the competitive inhibition of MyD88 dimerization in living cells, leading to improved inhibition of the Toll-like receptor and IL-1 receptor signaling. Importantly, myristoylation converts c(MyD 4-4) to an orally bioavailable inhibitor of MyD88. Oral administration of c(MyD 4-4) significantly lowered the inflammatory cytokines secreted by peripheral autoimmune T cells in mice immunized with myelin antigens and ameliorated disease severity in the mouse model of multiple sclerosis. Taken together, we show the conversion of a protein active region to a metabolically stable, selective cyclic peptide that is orally bioavailable.